19 May 2016 : David Sampson

Tissue mechanics on the meso-scale: Probing mechanical contrast with optics

Speaker : Prof David D Sampson – University of Western Australia

Venue    : Thu 19 May 2016 @ 4pm (Murdoch University, ECL2.031)

The mechanics of cells and tissues is important in a variety of ways that drives major topics of research in cell biology, biophysics and medicine. Arguably, research on the cellular and sub-cellular scale and, at the other extreme, on the whole organ scale of medical imaging, is being well served by existing imaging methods. The gap in the spatial resolution spectrum between these two extremes presents an opportunity to be filled by optics, in probing length scales from the few micrometers to perhaps 10-100 times that. Such scales are relevant to probing a cell and convey the potential to study cell mechanics in situ in real tissues. They also convey the potential to resolve heterogeneous tissue structures, such as cancer, which could aid in the more effective surgical removal of tumors. Mechanical properties are important to measure in their own right, but additionally they also represent an alternative form of contrast to that of optical properties, which provides new opportunity in imaging tissues. Probing mechanics with optics is not new, but various aspects have converged recently to make possible high-contrast, high-resolution imaging of tissue mechanics. This plenary will try to tease out this story, demonstrate progress, and highlight where the field might go in the future.


Professor David D. Sampson is at the Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering and at the Centre for Microscopy, Characterisation & Analysis of the  University of Western Australia.


Professor David Sampson heads the Optical+Biomedical Engineering Laboratory and is Director of the Centre for Microscopy, Characterisation & Analysis at The University of Western Australia. He directs the Western Australian nodes of the Australian Microscopy & Microanalysis Research Facility and the National Imaging Facility (Australia). He is a Fellow of the Institute of Electrical and Electronics Engineers, the OSA – The Optical Society and SPIE – The International Society for Optics and Photonics. Prof. Sampson’s research interests are in the science and applications of light in medicine and biology. His research is focused on the translation of microscopy techniques to imaging in the living body – medical microscopy. He was awarded the IEEE Photonics Society’s Distinguished Lecturer Award in 2013 for the Microscope-in-a-Needle, a deep tissue imaging platform. His other interests are in optical elastography, the microscale imaging of tissue stiffness, and parametric imaging of other tissue properties, such as optical attenuation, birefringence, and speckle dynamics to detect microvasculature, with a view to creating a suite of tools to comprehensively characterise the tissue microenvironment.